Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Journal of Educational Sciences & Psychology ; 12(2):95-103, 2022.
Article in English | Web of Science | ID: covidwho-2307942

ABSTRACT

Fake news is one of the most discussed topics in the last few years. During the COVID-19 pandemic and during the Ukrainian war, the dangerous nature of this phenomenon became more obvious. More politics and more journalists are using now (fake) news as a weapon. Modern war must be considered in its informational part also. So, a correct evaluation of the news is an important skill for their consumers. Which are the psychological effects of fake news on the audience? Which is the psychological profile of the people that consume fake news? Which people are more vulnerable to suffering its negative effects? Why do people believe and share fake information? How can we explain the failure to distinguish accurate from inaccurate news? We studied the recent research in order to find the answers. This study is a literature review on the argument of fake news, its psychological effects on people and some explanations for this phenomenon.

2.
Sci Total Environ ; 873: 162209, 2023 May 15.
Article in English | MEDLINE | ID: covidwho-2241724

ABSTRACT

Monitoring of SARS-CoV-2 in wastewater (WW) is a promising tool for epidemiological surveillance, correlating not only viral RNA levels with the infection dynamics within the population, but also to viral diversity. However, the complex mixture of viral lineages in WW samples makes tracking of specific variants or lineages circulating in the population a challenging task. We sequenced sewage samples of 9 WW-catchment areas within the city of Rotterdam, used specific signature mutations from individual SARS-CoV-2 lineages to estimate their relative abundances in WW and compared them against those observed in clinical genomic surveillance of infected individuals between September 2020 and December 2021. We showed that especially for dominant lineages, the median of the frequencies of signature mutations coincides with the occurrence of those lineages in Rotterdam's clinical genomic surveillance. This, along with digital droplet RT-PCR targeting signature mutations of specific variants of concern (VOCs), showed that several VOCs emerged, became dominant and were replaced by the next VOC in Rotterdam at different time points during the study. In addition, single nucleotide variant (SNV) analysis provided evidence that spatio-temporal clusters can also be discerned from WW samples. We were able to detect specific SNVs in sewage, including one resulting in the Q183H amino acid change in the Spike gene, that was not captured by clinical genomic surveillance. Our results highlight the potential use of WW samples for genomic surveillance, increasing the set of epidemiological tools to monitor SARS-CoV-2 diversity.


Subject(s)
COVID-19 , Wastewater , Humans , SARS-CoV-2/genetics , Sewage , COVID-19/epidemiology
3.
Emerg Infect Dis ; 27(5): 1405-1415, 2021 05.
Article in English | MEDLINE | ID: covidwho-1201879

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly become a major global health problem, and public health surveillance is crucial to monitor and prevent virus spread. Wastewater-based epidemiology has been proposed as an addition to disease-based surveillance because virus is shed in the feces of ≈40% of infected persons. We used next-generation sequencing of sewage samples to evaluate the diversity of SARS-CoV-2 at the community level in the Netherlands and Belgium. Phylogenetic analysis revealed the presence of the most prevalent clades (19A, 20A, and 20B) and clustering of sewage samples with clinical samples from the same region. We distinguished multiple clades within a single sewage sample by using low-frequency variant analysis. In addition, several novel mutations in the SARS-CoV-2 genome were detected. Our results illustrate how wastewater can be used to investigate the diversity of SARS-CoV-2 viruses circulating in a community and identify new outbreaks.


Subject(s)
COVID-19 , SARS-CoV-2 , Belgium/epidemiology , Humans , Netherlands/epidemiology , Phylogeny , Wastewater
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.21.20198838

ABSTRACT

The current SARS-CoV-2 pandemic has rapidly become a major global health problem for which public health surveillance is crucial to monitor virus spread. Given the presence of viral RNA in feces in around 40% of infected persons, wastewater-based epidemiology has been proposed as an addition to disease-based surveillance to assess the spread of the virus at the community level. Here we have explored the possibility of using next-generation sequencing (NGS) of sewage samples to evaluate the diversity of SARS-CoV-2 at the community level from routine wastewater testing, and compared these results with the virus diversity in patients from the Netherlands and Belgium. Phylogenetic analysis revealed the presence of viruses belonging to the most prevalent clades (19A, 20A and 20B) in both countries. Clades 19B and 20C were not identified, while they were present in clinical samples during the same period. Low frequency variant (LFV) analysis showed that some known LFVs can be associated with particular clusters within a clade, different to those of their consensus sequences, suggesting the presence of at least 2 clades within a single sewage sample. Additionally, combining genome consensus and LFV analyses we found a total of 57 unique mutations in the SARS-CoV-2 genome which have not been described before. In conclusion, this work illustrates how NGS analysis of wastewater can be used to approximate the diversity of SARS-CoV-2 viruses circulating in a community.

SELECTION OF CITATIONS
SEARCH DETAIL